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LABELING EVALUATION

Odepression , sleeplessness , muscle weakness . Health Canada has posted their database

of adverse reactions to drugs . This will be helpful for those folk who feel they are alone in
their adverse reactions to see that there are many others who suffered the same fate . It
would be interesting if the Food & Drug Administration follows this example .

Within 7 days | had such severe myopathy ( muscle pain ) and cramping | could not walk ,
my CPK was elevated to that of a person having a heart attack and my liver enzymes were
very elevated . | was on 10 mg and in .

edepression , general malaise , nausea, taste loss , insomnia , hair loss, bronchitis and/or

flu 3 times during winter and 1-2 times during summer , abdominal pain, muscle
Easmns in legs and left arm , back pain . | felt always like | had a veil over my head and
lead in my legs . This drug is a nightmare and should be discontinued . | had my first child
at 34 and my husband and | wanted a second one badly . Because of all the medical
issues this had to be postponed . Meanwhile my husband lost his job and we had to apply
for insurance coverage - | was refused due to my medical history even | had been an
extremely healthy individual until | was put on this medication .

Jeffrey Heer

jheer@uw.edu
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Figure 1: The iSeqL tool for interactive text sequence learning. A) Users label sampled instances; user-annotated entities are
highlighted in yellow. B) Predictions from the current model are underlined to expedite annotation and convey model perfor-
mance. The right-most panel contains evaluation aids: C) the count of labels that “flipped” in the last round, D) a model quality
(F1) score against held out data; and E) an entity rank chart that shows the top predicted, labeled, and discovered entities.

ABSTRACT

Exploratory analysis of unstructured text is a difficult task, par-
ticularly when defining and extracting domain-specific concepts.
We present iSeqL, an interactive tool for the rapid construction of
customized text mining models through sequence labeling. With
iSeqL, analysts engage in an active learning loop, labeling text in-
stances and iteratively assessing trained models by viewing model
predictions in the context of both individual text instances and task-
specific visualizations of the full dataset. To build suitable models
with limited training data, iSeqL leverages transfer learning and
pre-trained contextual word embeddings within a recurrent neu-
ral architecture. Through case studies and an online experiment,
we demonstrate the use of iSeqL to quickly bootstrap models suffi-
ciently accurate to perform in-depth exploratory analysis. With less
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than an hour of annotation effort, iSeqL users are able to generate
stable outputs over custom extracted entities, including context-
sensitive discovery of phrases that were never manually labeled.
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1 INTRODUCTION

Exploratory analysis involving unstructured text is an important
and difficult task. Vast troves of unstructured text such as comments,
reviews, news articles, and documents contain information lacking
in available structured data. For example, pharmaceutical analysts
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may want to analyze online drug reviews on a large scale to find
out what reactions people are reporting, businesses may want to
analyze reviews to see customer feedback, and analysts may want
to analyze trends in news articles or scientific papers. Analysts
may need to quickly bootstrap custom models for domain-specific
concepts, which is difficult due to the domain expertise required
and the complexity of Natural Language Processing (NLP) models.
Analysts could benefit from interleaving model construction with
visual analytics to explore the data and assess model performance.

Existing research mostly leverages model abstractions, ranging
from simple word counts to complex statistical models, to under-
stand raw text [8]. Commonly seen approaches struggle to balance
three aspects, namely (a) the semantics captured, (b) the effort
required to produce a model sufficiently accurate to initiate ex-
ploration, and (c) the flexibility to adjust and customize a model
to capture idiosyncratic or domain-specific concepts. Models fit
to massive training data can usually “read” unstructured text to
extract information at different granularities (document, sentence,
or phrase level), maximizing the expressiveness of the information
we get from the text (a). However, pre-trained off-the-shelf models
(e.g., for named entity recognition) only exist for a limited set of
domains [3, 16, 24]. For other domains, analysts must build their
own models: a task that may require massive human labeling effort,
machine learning expertise, and significant computing resources,
producing obstacles to both ease (b) and flexibility (c).

On-the-fly construction of dictionary models, commonly seen in
the exploratory text analysis literature [10, 12, 26], enables users to
iteratively apply their domain knowledge through dictionary con-
struction. However, such methods treat all occurrences of a word
as the same. This lack of context-sensitivity limits accuracy (a).
Interactive machine learning methods seek to overcome these limi-
tations by allowing users to customize their model; however, the
main focus in the general interactive machine learning (IML) litera-
ture [18, 45] is to build accurate models first, often incurring too
much overhead for rapid exploratory analysis (b).

We contribute iSeqL (pronounced “icicle”), an interactive ma-
chine learning tool for the rapid construction of sequence labeling
models to aid exploratory data analysis. iSeqL operates at the word
sequence level so that users can annotate at the desired level of
granularity (c). iSeqL guides users to iteratively update their un-
derlying models via active learning, while aiding in situ evaluation
through integrated visualizations of performance measures, model
predictions, and custom task-specific exploratory graphics (b). Im-
portantly, we achieve more powerful models than in prior IML
work by leveraging transfer learning within deep recurrent neural
networks. iSeqL uses these architectures to learn semantic repre-
sentations to discover new labels for the user (a). To overcome
the latency induced by iteratively training these models — which
may frustrate users by making them regularly pause and wait — we
apply interleaved interaction and feedback strategies, such that
model updates and manual labeling can proceed in parallel.

In an experimental benchmark study, we simulate active learning
sessions to evaluate different model architectures and active learn-
ing heuristics. We identify those combinations capable of producing
sufficiently accurate models given limited training data. Through
both case study demonstrations and a controlled user study with
36 workers on Amazon Mechanical Turk, we show how iSeqL can
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be used to train a model and leverage it to visually explore a large
text corpus with an hour’s work. We find that with iSeqL novices
are able to quickly build effective models for identifying reported
adverse drug reactions. We also observe that in situ visualization
of model predictions within iSeqL’s labeling interface accelerated
labeling without loss of accuracy. Across the subjects in our study,
we find that F1 performance on a ground truth set is comparable
to our simulated experiments. Through surveys and free text re-
sponses, we find that subjects were, on the whole, confident with
their models and resulting outputs.

In summary, iSeqL contributes: (1) An IML system for sequence
labeling that leverages pretrained embeddings and transfer learning
to expedite interactive labeling; (2) An interface that interleaves
model training with annotation in order to make efficient use of
user’s time, and provides visual aids to evaluate progress and enable
insights into the data; and (3) An evaluation confirming that iSeqL
users can rapidly train, assess, and apply models for visual analysis
of text data. We find that showing the predictions of a current model
expedites annotation without adding undue bias. iSeqL is available
as open source software at www.github.com/AkshatSh/iSeqL.

2 RELATED WORK
2.1 Exploratory Analysis of Unstructured Text

To the best of our knowledge, we are the first to evaluate a combined
interactive machine learning and exploratory data analysis system
for sequence modeling. However, prior work has examined many
other aspects of exploratory data analysis of unstructured text.

Jigsaw [44] is a tool to explore extracted entities using a variety
of visualizations. While Jigsaw and iSeqL both analyze entities, a
key difference is that Jigsaw uses existing classifiers for a predefined
set of entity classes. iSeqL aims to let users define arbitrary classes
and construct new deep learning models for their specific use case.
Accordingly, iSeqL could serve as a sub-component that integrates
with and augments systems such as Jigsaw.

TextTile [13] processes text to produce a list of general linguistic
features, including tokenized unigrams, sentiment, part-of-speech
tags, etc. Treated as additional “structured” metadata, these features
enable rich filters on text snippets. iSeqL shares the objective of
augmenting unstructured text with additional information. How-
ever, TextTile’s predefined feature list is constrained; iSeqL supports
flexible customization for sequence level analysis.

Dictionary-building approaches, such as ConceptVector [26],
Empath [12], and TextFlow [10], allow users to analyze document
concepts by leveraging a word embedding space to find related
terms in order to build up dictionaries. While the resulting dictio-
naries are interpretable, they are also insensitive to context, leading
to potential false positives (when word meaning shifts due to con-
text) and an inability to “discover” new entities not in the dictionary
at prediction time. In contrast, iSeqL can identify entities that were
neither labeled nor observed during training.

Topic model visualizations such as LDAViz [41] and TopicCheck
[9], allow users to examine multiple topics inside of texts and an-
alyze their relation to different terms. However, underlying topic
modeling algorithms such as LDA [4] generate coarse document-
level semantic labels that require human interpretation and are
often insufficient for fine-grained analysis [7, 8].
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Other tools, such as OpinionSeer [50], support text analysis
in a specific domain. For example, OpinionSeer targets customer
opinions on products or services. While useful, it lacks the flexibility
that we desire to switch to other domains and build custom models.

2.2 Interactive Machine Learning

We seek to build new sequence labeling models for arbitrary classes
through interactive machine learning (IML). Related prior work in-
cludes the Explanatory Debugging [18] and NLPReViz [45] projects.
These tools provide similar interactions as iSeqL — namely, selecting
labels by highlighting text —but our goals are different. NLPReViz
and Explanatory Debugging prioritize the creation of an accurate,
personalized model for each individual user. We view model build-
ing as an iterative process integrated into visual analysis: a user
quickly builds a model as an intermediate and iterative step within
an exploratory analysis. In turn, the visualized model output (and
how it changes as the model updates) aids validation and informs
user choices of whether to engage in additional labeling effort.

Prior work has explored challenges with the current state of
human-centered machine learning [36], namely designing inter-
action for ML adaption and measuring quality and consistency. By
leveraging contextual embeddings iSeqL allows ML adaption simply
through labeling interactions and utilizes visualized model outputs
to allow quality and consistency evaluations.

In addition, our work addresses more complex models. Much
prior IML work focuses on shallow models applicable to document-
level classification, such as Naive Bayes and Support Vector Ma-
chines. iSeqL uses recurrent neural networks that consistently out-
perform shallow models for sequence labeling [19, 20, 31, 40, 49],
leading to a similar interaction space for a different problem.

spaCy [16], an open source NLP package, includes a tool called
Prodigy, which also uses an IML approach for sequence modeling.
Prodigy aims to help ML engineers annotate data for model pro-
totyping, and provides information about labeling progress and
accuracy. iSeqL instead supports analysts, where the goal is ex-
ploratory data analysis. iSeqL demonstrates how visual summaries
can be used to assess model performance on unlabeled data, and
simultaneously explore data while evaluating the model.

Other methods, such as Snorkel [34], attempt more distant super-
vision in lieu of manual instance labeling, using data programming
(writing labeling functions) to generate a noisy dataset to learn from.
However, writing labeling functions requires programming exper-
tise and often involves access to pre-existing taxonomies. With
iSeqL we focus on accelerating model creation via manual labeling;
future work might examine how to extend our integrated modeling
and exploratory analysis loop to data programming approaches.

3 MODELING & ACTIVE LEARNING

The goal of iSeqL is to enable a single end user with limited ma-
chine learning or natural language processing experience to build
sequence labeling models to explore text quickly. This goal naturally
leads to our objective to minimize time while achieving sufficient
accuracy. In this section we explore various modeling architectures
and active learning settings to determine what works best in low-
resource settings. Informed by prior text analysis work [18, 20, 22,
23, 43, 45] we concluded that promising approaches for accurate,
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context-sensitive, and data-efficient models include (1) pre-trained
contextual embeddings to enable transfer learning from large, gen-
eral language contexts to a specific labeling domain, and (2) active
learning methods to select relevant instances for annotation.

We evaluate the use of transfer learning with pre-trained em-
beddings, along with active learning approaches. As we surveyed
the sequence labeling literature (e.g., [21, 30, 49]), we noticed a
strong trend in favor of the following architecture: Embedding Layer
— Recurrent Neural Network (RNN) — Conditional Random Field
(CRF). Due to its popularity and superior performance, we evalu-
ate this approach for iSeqL. We compare state-of-the-art named
entity recognition models alongside dictionary classifiers. Through
simulated experiments we show how models bootstrapped with
ELMo [31] embeddings meet our design objectives, and find that
no single active learning technique dominates overall.

3.1 Pre-trained Contextual Embeddings

Word embeddings map tokens in text to a numerical feature vector
in a high-dimensional space. Unlike standard word embeddings
produced by methods such as word2vec [25] and GloVe [28], con-
textual embeddings produce vector word representations based on
surrounding context, such that a single word may be represented
differently based on the linguistic context in which it is used [42].
Sequence labeling tasks, such as NER, have been shown to benefit
from contextual embeddings [11, 29, 31, 35].

There are many contextual representation models, including
ELMo [31], GPT [32], BERT [11], and GPT-2 [33]. In this work we
use ELMo, though iSeqL can use other embedding models. In ELMo,
words are represented as a function of the characters involved,
which helps in identifying unseen words. Prior work [31] demon-
strates that ELMo embeddings can be used to build models with
less data and better performance for tasks such as semantic role
labeling and natural language inference. We extend the experiments
done in the ELMo paper, showing how it can be used to increase
performance in sequence labeling tasks given limited training data.

However, the use of contextual embeddings can dramatically in-
crease the resources needed to train models. This poses a challenge
for interactive tools with strong latency requirements. In response,
we precompute ELMo vectors. We first run the ELMo network over
every instance in the dataset and store the resulting vectors. During
training and evaluation, we retrieve the cached ELMo vector and
apply the BiLSTM and CRF layers rather than run each sentence
through the full ELMo BiLSTM CRF network. Appendix C presents
experimental results on the effect of precomputation.

3.2 Active Learning

To reduce user labeling effort, we examine active learning methods
to select unlabeled instances to annotate. Informed by the active
learning literature [5, 39, 40, 43, 51], we selected three approaches:

Random Sampling: A baseline in which instances are sampled
uniformly at random, with no active learning heuristics.

Uncertainty Based Methods: Sample instances about which
the model is most “uncertain” in order to refine the decision bound-
ary. We use the minimum Viterbi probability [46], which defines
uncertainty as P(y*|x), where y* is the most likely sequence and
P(y|x) is the Viterbi score of label sequence y on input x.
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Embedding Space kNN: A k-Nearest Neighbors (kNN) approach,
similar to the heuristic used in CueFlick [14]. We sample unlabeled
instances that contain the most words that are closest to the pos-
itively labeled words. We measure word distance as the cosine
similarity between two contextual embedding vectors.

3.3 Experiments

We present a series of experiments and a simulation of an active
learning environment across three different datasets from different
domains. We begin by benchmarking each model using a classical
supervised learning setup. We then evaluate each model in an
environment where random training samples are iteratively fed to
the model, and report performance on a held-out test set. Finally, we
use the best-performing model to assess active learning heuristics.

3.3.1 Experimental Models. We use benchmark experiments to
assess two different aspects of our modeling approach. First, we
compare dictionary classifiers against state of the art BILSTM CRF
models. We also compare neural BILSTM CRF models with and
without pre-trained embeddings, for a total of four model architec-
tures (hyperparameters are listed in the Appendix, section B).

Word-Level Dictionary Classifier. The model is a dictionary
for the entire dataset, storing counts for each word along with the
class it belongs to. The model predicts classes at the word level: the
tag for each word is predicted to be the most frequent tag for that
word in the training data. The model is trained by counting the
positive and negative labels for each word in the training set.

Phrase-Level Dictionary Classifier. The model is an entity-
level dictionary classifier. Whereas the previous dictionary classifier
operates at the word level, this approach stores a dictionary of posi-
tively defined entities, including multi-word phrases. At prediction
time, if the incoming sentence contains any entities in the dictio-
nary, the model marks those entities as positive labels. All positively
labeled entities in the training set are stored in the dictionary.

Word-Level BiLSTM CREF. A state-of-the-art neural network
for named entity recognition, without pre-trained embeddings. The
model includes a bi-directional RNN, which then feeds into a CRF.
The model is trained using stochastic gradient descent, starting
from scratch without any pre-trained components.

ELMo BiLSTM CREF. A state-of-the-art neural network boot-
strapped with ELMo embeddings. For improved computational
efficiency, we freeze the ELMo embeddings as a fixed feature repre-
sentation rather than fine-tune weights. Peters et al. [29] report a
minimal accuracy difference between fine-tuning and fixed feature
extraction. The model is trained with stochastic gradient descent.

3.3.2 Datasets. For each model type, we ran benchmark experi-
ments on three datasets drawn from three different domains:

CONLL (News). The CONLL2003 task for named entity recog-
nition [37] involves identifying entity types in news articles, such
as Person (PER), Organization (ORG), and Location (LOC). We eval-
uate our models against the PER tag, to show how our system
could be used to identify a series of unique names — a case where
dictionary-based methods are unlikely to work well.

CADEC (User Reviews). The CSIRO Adverse Drug Event Cor-
pus [17] is a dataset of user reviews about prescription drugs. The
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Model CONLL CADEC SCIERC
Word Level Dictionary 0.86 0.63 0.23
Phrase Level Dictionary 0.76 0.59 0.16
Word Level BiLSTM CRF  0.90 0.75 0.52
ELMo BiLSTM CRF 0.99 0.80 0.64

Table 1: Overall validation set F1 model performance across
datasets, using all available training data.

reviews are annotated with Adverse Drug Reaction (ADR), Symp-
tom, Drug, Disease, and Finding. Here we evaluate against the ADR
class. The ADR class is one of the most difficult to identify for two
reasons. First, adverse reactions are heavily dependent on context
and the text is from user source reviews. Second, patient-authored
medical text is more prone to linguistic variation (including slang
terms and misspellings) than paper abstracts and news articles [23].

SCIERC (Paper Abstracts). The SCIERC dataset [20] is a multi-
task dataset, including named entity recognition of scientific terms
in Artificial Intelligence paper abstracts. Example tasks include
identifying Method, Task, and Term classes in a scientific paper.
We evaluate our models against the Task tag. We use this dataset
to evaluate our model in the computer science domain.

3.3.3 Evaluating Modeling Approaches. We first examine the max-
imum performance achieved by the models. We train the models
on a dataset consisting of 80% training, 10% validation, and 10%
test sets. Each model is trained for 15 epochs, and we retain the
model with the highest validation set F1 performance. The results
in Table 1 show that the ELMo model has the highest performance
on all the datasets. Due in part to differences in context sensitivity,
neural models strongly outperform the dictionary classifiers. Due
to the large performance gaps, we did not spend a considerable
amount of time tuning the models, and so our reported numbers
may not be optimal. However our results echo prior results in which
ELMo-based models outperformed others [20, 31, 52].

Next we assess model performance in a simulated interactive
context in which the training dataset incrementally grows. We
remove the phrase-level dictionary from consideration, as it was
consistently worse than the word-level dictionary. We iteratively
query an oracle (ground truth annotations) to label {1, 5, 10, 25,
50, 100, 200, 400} additional instances leading to dataset sizes of {1,
6, 16, 41, 91, 191, 391, 791}. We evaluate performance using pure
random sampling of instances. The top row of Figure 2 summarizes
the results, plotting F1 scores averaged over 10 separate training
runs for each dataset size. In each domain, the ELMo BiLSTM CRF
model dominates the other models at every dataset size.

To assess how different heuristics perform, we use an ELMo
model within the same active learning simulation as above, but
using our three instance selection heuristics (Random, Uncertainty,
kNN). We run tests for each method using the same datasets as
before. The results are summarized in the bottom row of Figure 2.

Our results indicate that an uncertainty based heuristic is capable
of performing better than other active learning heuristics, but it is
highly variable depending on the dataset and the number of training
instances. For example, out of our 10 runs on the CONLL dataset,
at dataset size 41 two of the trials produce a zero F1 score, yet the
other eight runs outperform the other active learning heuristics
(averaging 0.92 F1, while kNN averages 0.64 and random averages
0.73). Consistent with the literature [6], due to seeding effects,
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Figure 2: Benchmark model performance by training set size, showing the average F1 score and bootstrapped 95% CIs from
10 modeling runs. Dotted lines indicate the top performing model over the full training set. Top row: Performance by model
type, with instances selected via random sampling. ELMo models approach maximum performance with a small number of
instances. Bottom row: ELMo model performance using different active learning heuristics; no single technique dominates.

uncertainty sampling may not help when the dataset size is too low
(size < 100). This variation is more likely to occur when there is a
sparsity of positive labels, as in CONLL with the PER tag.

We conclude that the ELMo BiLSTM CRF model is the best for
our use case, and active learning heuristics are of secondary impor-
tance. As a result, we leave the choice of active learning heuristic
as a user-configurable parameter. Future work may explore hy-
brid techniques, such as first using random or kNN selection then
switching to uncertainty sampling once a balanced set of labels has
been collected [2]. In addition, our results confirm the limitations of
dictionary-based approaches, despite their popularity [10, 12, 26].

4 SYSTEM DESIGN

We now present the iSeqL system and interface design. We first
describe our methods for interleaving annotation and evaluation.
We go on to discuss the user interface, including the annotation
page and visualizations for assessing model performance.

The system architecture is shown in Figure 3, showing the re-
lationships between components. Users begin by interacting with
iSeqL to label a batch of instances. Once labeled, iSeqL stores the
labels and sends them to a Model component for training. While
the model trains, the Active Learning Manager evaluates which in-
stances to present next. Once the model is finished training, the user
can explore the model predictions on their dataset through both
built-in and custom visualizations. All labels that a user provides are
saved, and model predictions at each step are cached. This allows
users to “step back” to earlier iterations of their model and compare
how their visualizations have changed, shown in Appendix A.

Train Model
Labeled Model
Data
Add labels
Send Labels .
iSeql > iSeqL
Tool | Server | Get Database _Sr;ri‘:eu
Get Predictions with Predictions Mo
End User Get Instances to Label 4
Send 2,
Instances X
to Get Labeled E4
y

Evaluate Heuristic

Manager

Figure 3: The iSeqL system architecture. The server tracks
the active learning loop state for each user.

Our overarching goal is to help end users efficiently build an un-
derlying model, so they can explore new unstructured text datasets
within an hour. We had two corresponding system implementation
goals: (S1) we want the time the user spends waiting for the system
(Ts) to be much less than the user annotation time (T;,), denoted as
Ts << Ty; and (S2) we want to support the active learning loop by
interleaving annotation, training, and intermediate evaluation.

4.1 Effectively Utilizing Active Learning

In order to support the active learning loop, we present two key
design considerations for active learning interactions in iSeqL: (1)
batched active learning and (2) evaluation set selection.
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4.1.1 Batched Active Learning. Effective active learning requires
a balance between annotation and model fitting. We want to limit
users’ labeling effort and (re-)training time to enable rapid iteration
(S1). Due to training and prediction costs, updating models per
label introduces too much latency; instead, we apply batched ac-
tive learning. To further utilize training time we institute “parallel
processing” for user annotation and model fitting: as a user labels
one batch, the system trains on the previous one (52).

More formally, starting with an empty model m with no training
data, users label batches of inputs b;, i € 0, ..., n, where by and by
are always randomly selected. When a batch has been labeled, the
model is retrained and updated from m;_; to m; on the backend.
Meanwhile, users are free to label a new batch b;.; selected using
model m;_1. Given a labeling duration L(b;) and training time T(b;),
we want to pick a batch size such that L(b;) ~ T(b;), such that the
user will always have something to do as the model trains. Through
piloting we found that if we ask a user to label batch sizes of |b| = 25,
labeling each batch takes roughly 10 minutes, and the server is able
to train and evaluate a new model within 10 minutes. However, as
our labeled dataset grows, the training pipeline will take longer,
and the performance curve will start to plateau. To counteract this,
we setup our system to double |b| after every 5 iterations.

4.1.2  Evaluation Set. In classical supervised learning, a model is
trained on a training set, tuned on a validation set, and evaluated
on a test set. Each of these sets are drawn from similar distributions,
e.g., with 80% of the data used for training, 10% for validation,
and 10% for testing. To simplify our problem, we do not form a
validation set. We justify this as our model hyperparameters are
predetermined! and the user is not involved in tuning the model. In
general, having a test set induces trade-offs, as the user annotation
time could be used to provide more training instances to the model.
We could ignore the test set and let the user trust the model we
provide; however, the user will not know if the model overfits. We
could ask the user to build a strong test set, but as user annotation
time is limited, labeling 100 instances that do not directly improve
the model may not be worthwhile.

Instead, iSeqL iteratively builds the test set alongside the train
set. We select a parameter €, such that when we ask the user to label
b instances, € - |b| instances are used for the train set and (1 —¢€) - |b|
are used for the test set. This amortizes the cost of annotating a test
set, and provides some statistics on how the model is performing on
a hold out set. However, the user has to go through a few iterations
before the test set has meaningful information. As a user progresses
through iterations of the active learning loop, their test set becomes
larger, and the model performance will stabilize. A user is not
blocked by labeling a test set, but rather builds an initially noisy
test set that gets more accurate over time.

4.2 User Interface Design

Traditional active learning systems rely on surfacing performance
metrics on a large annotated test set [40, 43]. In contrast, iSeqL
does not have a large test set and should limit the amount of time
needed to build a sufficient model (i.e., within an hour), posing the
following design challenges:

!We find a stable configuration for our hyperparameters through our experiments
detailed in Appendix B.
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C1. Assess model quality during labeling. In pilot tests of
prototypes, users found it difficult to know when to switch between
exploring model predictions and providing labels. Our current de-
sign integrates these two views so that users can simultaneously
provide labels and assess model output.

C2. Know when to stop. Users need to know when they should
stop labeling and focus on exploring model output. Error tolerances
can vary over different users and different domains. iSeqL provides
visualizations to aid judgments of when to stop.

4.2.1 Labeling Interactions. A core function of the iSeqL interface
is to label entities within text instances. We constrain an entity to
be a consecutive sequence of words. Users can annotate a span of
text via drag-based mouse selection, similar to standard text high-
lighting. Since labels are at the word level, but selection is at the
character level, we adjust the highlighting to automatically snap
to the beginning word of the sequence and the end word of the
sequence. The labeled sequences are highlighted with a yellow back-
ground (Figure 1 A). As users may make mistakes while selecting,
iSeqL supports deselecting a span by clicking on it. We also include
a button to clear all labels for an instance. We allow users to exclude
an instance from training if they find it is too difficult to label or
introduces irrelevant noise. In addition to manual labels, we show
model predictions (C1). Predicted entities are underlined in purple
to provide a strong contrast with manual labels. Our hypothesis
is that showing predictions will help users label instances more
quickly as well as perform in situ assessment of model performance.

4.2.2  Evaluation Side Panel. The iSeqL interface includes a side
panel with visualizations of model performance and output, in-
tended to help users gauge how well their model is performing.
There are three components of the side panel (Figure 1 C, D, E):

Flipping Labels (Figure 1 C): This view depicts how model
performance changes across iterations (C2) by depicting how many
labels “flipped”: spans that were previously identified as an entity
but no longer, and vice versa. An area graph shows how many
labels flipped from positive to negative (or vice versa) between
batches. As a user progresses over training rounds, they should
gain an understanding of how their model is changing over time,
and estimate if another iteration might significantly improve their
model. If the number of flipped labels approaches zero, it signifies
the model has stopped learning.

Quality Score (Figure 1 D): This view presents standard model
performance metrics. Traditionally in NLP, users will look at metrics
(F1, precision, and recall) over a test and train set. In this view we
display the chosen metric, F1, as a time series, so users can analyze
how model performance is changing through their iterations on
both the train set and the test set. This view helps users understand
standard metrics for model performance, however only on labeled
data, which is limited in most use cases. This helps with C1, however
is likely to be noisy until a sufficiently large test set is labeled.

Entity Rank Charts (Figure 1E): This view summarizes model
predictions over the entire dataset, providing insight into model
quality. Users can judge the correctness of the model (C1) based
on their intuition of what the top entities should be, and assess
convergence (C2) based on ranking stability. The list shows entities
ranked according to the number of occurrences of that entity in
the overall dataset. A bar chart shows the occurrence frequency of
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Figure 4: Entity Rank Chart showing predicted entities. A)
entity increased in rank; B) entity decreased in rank; C) a
discovered entity; D) a newly predicted entity.

predicted entities in the list. Green up-arrows and red down-arrows
(Figure 4 A and B) show whether the item in the list went up or
down in rank since the previous iteration. Seeing the rank change
can help users understand whether the model is stabilizing and
assess whether the model is updating properly. A star icon (Figure 4
C) indicates items that are marked as discovered (predicted but not
labeled), and a “new” icon indicates entries that did not appear in
previous iterations. This helps users identify explicitly what entities
their latest iteration helped discover (Figure 4 D).

Using a drop-down menu, users can select among three different
ranked lists: all predicted entities (the default), labeled entities
only, and discovered (predicted but not labeled) entities only. Using
these three lists, users can assess if the model is predicting the
correct labels (predicted entities), generalizing properly (discovered
entities), and see how it compares to their provided labels.

4.2.3  Exploratory Views. To explore their datasets, we give users
two options. Users can examine their dataset at the entity level
using pre-configured visualizations, including the entity rank list
described above. Inspired by Jigsaw [44], iSeqL also provides a view
to visualize the relationships between entities. We consider two
predicted entities to co-occur if they are both predicted within the
same instance. We visualize co-occurrence as an adjacency matrix
(Figure 5 D) that shows how the top-k entities interact, where k is
a user-configurable parameter.

To explore text data alongside the other metadata, iSeqL also
allows users to provide custom Vega-Lite specifications [38]. iSeqL
integrates input data tables (including various metadata fields) with
entity predictions. This setup allows users to define their own
views and use model outputs for exploratory data analysis. The
case studies in §5.1 and Figure 5 (I, ], K) shows examples of this
functionality. Going forward, iSeqL output could be integrated as a
data source for visual analysis tools such as Voyager [47, 48].

5 EVALUATION

We evaluated iSeqL in three different ways. Earlier (§3.3.3) we
assessed our modeling choices through simulated active learning
runs. Here, we evaluate the utility of iSeqL through case studies
and present an analysis of model building capabilities through a
controlled online experiment.

5.1 Case Studies

We demonstrate iSeqL through two case studies conducted by the
first author of this paper. We assess how iSeqL can be used to reveal
new insights about unstructured text in two different domains:
patient-authored posts about drug side-effects and Yelp reviews.
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5.1.1 Case Study 1: Adverse Drug Reactions. In this case study
we examine the CADEC dataset [17]. We chose CADEC because
examining drug reviews is an interesting topic and relevant to
sequence modeling. However, as CADEC was annotated by medical
professionals, we simplify the labeling criteria, by using the shortest
sequence that could represent a reaction; e.g., in “severe muscle
pain in arms” only “muscle pain” gets annotated. We use iSeqL to
analyze patient reports and label adverse drug reactions. We seek
to answer two questions: What are the most frequently occurring
adverse reactions? How do adverse reactions co-occur?

We initially labeled 75 instances, at which point we start to see
that our model is performing as desired. Using the visual summaries
presented in the side panel (Figure 5 A, B, C), we observe that the
number of labels that flip between batches starts to decrease, our
predicted entity list has stopped changing, and our model perfor-
mance metrics stabilize. In addition, while labeling the subsequent
batch we see that our model is predicting reactions well (Figure 5,
E). Through these visualizations, we get a sense that our model is
training properly and is ready to be used for exploratory analysis.

To answer our original question we look at two charts: the pre-
dicted entity and entity co-occurrence views. The predicted entity
view (Figure 5 C) indicates that the top 3 adverse reactions occur-
ring in our drug reviews are “pain”, “muscle pain”, and “fatigue”.
Our second question is to investigate how these entities co-occur.
We examine an entity co-occurrence matrix (Figure 5 D). The first
column of the matrix shows how “pain” occurs with other entities.
We see that “weakness”, “fatigue”, and “muscle pain” are often men-
tioned alongside general reports of “pain”. Meanwhile, “tiredness”
and “dizziness” occur relatively less frequently with “pain”.

5.1.2  Case Study 2: Yelp Reviews. Next, we show how the entities
extracted by iSeqL can be aggregated to visualize document-level
scores. We also show how iSeqL can be used alongside other infor-
mation (namely sentiment analysis) to explore more complicated
questions. We examine a Yelp! reviews dataset [1] containing 7
million reviews for businesses around the world. In addition to text
reviews, the dataset contains extensive metadata (e.g., location, user
ratings, category, etc.). We demonstrate how iSeqL can be used in
conjunction with this data to gather information about restaurant
service. We investigate a subset of this data by randomly sampling
1,000 reviews for U.S. restaurants and investigate the question: How
does restaurant service quality affect restaurant ratings?

We start by defining our sequence labeling problem. We want to
identify “service entities,” a word or phrase concerning wait staff
service. To answer our question, we use iSeqL along with an off-the-
shelf sentiment analysis tool (from NLTK [3]) to define a service
quality score. We calculate average per-sentence sentiment score
of sentences containing iSeqL-tagged phrases related to restaurant
service. This score is formally defined in Equation 2:

M=

Il
(=]

Nservice is_service(r;) (1)

N

Z sentiment(r;) - is_service(r;) (2)

service i=0

1
score =
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Figure 5: Summary visualizations of case study results. ADR Case Study (left): In the side panel: A) labels are flipping less,
B) the quality (F1) scores are stabilizing, and C) the top entities have stopped changing rank. D) An adjacency matrix shows
the co-occurrence of adverse drug reactions. E) An example drug review (not yet labeled) with model predictions for adverse
reaction entities underlined in purple. Reading these predictions we can more qualitatively see the model’s behavior. Yelp Case
Study (right): F) label flips have reduced, G) quality scores are stabilizing, and H) the top entities have not changed rank and
seem relevant. I) The percentage of reviews that talk about service (predicted using iSeqL), grouped by Yelp ratings (stars). The
color scale encodes the average service quality score (SQS). J) Reviews per Yelp star, colors encode reviews that iSeqL predicts
discuss service (orange) versus those that do not (blue). K) Service scores computed using iSeqL predictions, grouped by Yelp
review ratings (stars). L) Unlabeled example reviews, with model predictions underlined.

where r; is the ith sentence in the review. The sentiment function
returns the sentiment score of the sentence, ranging from —1 (neg-
ative sentiment) to +1 (positive), with 0 as neutral. The function
is_service returns 1 if the sentence is about service and 0 if not,
based on whether iSeqL predicts the presence of a service entity.

We began labeling in iSeqL. After labeling 100 instances we
moved on to further analyze model results: Figure 5 (F, G, H) shows
that the statistics stabilized and Figure 5 (L) shows that the displayed
model predictions appear to be correct. Figure 5 (K) compares the
service quality score to the review ratings for the restaurant. We
see that, as one might expect, the service score correlates with
star ratings. Looking at Figure 5 (I), we can get a richer sense of
how service scores might contribute to a Yelp! user’s star rating
judgment. The bar heights show that around 73% of the reviews
that give 1 star to restaurants mention service, whereas only 53%
of reviews that give 4 stars mention service: service is a more
prominent concern within negative reviews.

However, we also notice that the top predicted entities are pos-
itive terms (Figure 5 F, G, H). Figure 5 (J) shows that our sample
contains more 4-and-5-star reviews. While there are more service-
related reviews that are positive, the relative percentage is lower
because many positive reviews do not mention service.

5.2 Online Experiment

To evaluate our design decisions we conducted a user study on Ama-
zon Mechanical Turk (MTurk). We sought to characterize novice
users’ timing and resulting model performance, and assess the ef-
fect of showing model predictions within the labeling interface.
We hypothesized that, (H1) by guiding user attention to poten-
tially relevant words, showing model predictions would result in
faster annotation times. However, showing predictions might bias
users, perhaps causing them to overlook relevant spans that lack
predictions. Nevertheless, as users still must read through the text
to ensure appropriate recall, we hypothesized that (H2) models
in both conditions (with and without predictions shown) would
exhibit similar performance in terms of F1, precision, and recall
scores. We tested these conditions in a between-subjects design.

5.2.1 Protocol. Following our case study in §5.1.1, we asked par-
ticipants to build a model to identify adverse drug reactions in the
CADEC dataset (§3.3.2). To make our task more accessible to a
general public, we altered the definition of “Adverse Reaction” to be
any reaction that is an unintended consequence of taking the drug.
Our study started with instructions explaining the task, related
technical terms, and the iSeqL interface. We used three quiz ques-
tions to verify that participants understood the task. They could
not progress until they had correctly answered the questions.
Participants completed five sequential batches of annotation in
iSeqL, labeling 25 instances per iteration. A model training run
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commenced on the server whenever a labeled batch was submitted.
The interface notified the user when the training was complete and
provided a button to update the model evaluation visualizations.
To enable proper comparison, for each batch all subjects labeled
the same instances, presented in the same order.

We tested two conditions using a between-subjects design. In the
show predictions condition, participants were shown model predic-
tions within the annotation interface (Figure 1). In the no predictions
condition, participants did not see any machine-produced labels
in the annotation interface. Both groups did not see any model
predictions during the first labeling batch, but the show predictions
group would see predictions once their first model had been trained.
Both groups had access to the summary visualizations showing
label “flips” between batches, per-batch validation set F1 scores,
and a ranked list of top entities (Figure 1 C, D, E).

At the end of the task, the subjects completed an exit survey
about the model they had built and their confidence in the results.
We asked subjects a series of 4 questions:

Top 3 Entities: As a compliance check, we asked subjects to
identify the top 3 predicted entities that were shown in the side
panel chart in Figure 1E. A subject was not allowed to submit the
survey until they had identified these entities correctly.

Entity Confidence: Subjects responded to the statement “The
top 3 predicted entities are correctly identified” Responses are on a
5-point Likert scale from “Strongly Disagree” to “Strongly Agree”.

Prediction Confidence: Subjects responded to the statement
“The model is correctly able to identify the adverse drug reactions
in the drug reviews.” The responses are on a 5-point Likert scale
from “Almost Never True” to “Almost Always True”.

Stopping Criteria: Subjects responded to the statement “In the
bottom-right panel there is a predicted entities list. How would an-
other round of labeling would improve the contents or the ranking
of the top 10 entities in the predicted entities list?” Responses are
on a 5-point Likert scale from "All of them would change" to "None
of them or one of them would change". The intent was to gauge
when users might decide to stop training their model.

Lastly, participants were encouraged to leave free-text comments
and feedback on their experiences using iSeqL.

5.2.2  Participants. We recruited 40 subjects on Mechanical Turk.
We restricted our participants to be in the United States, and have
an approval rating above 97%. Each participant was compensated
$12 USD. We did not ask the participants for their age or gender.

5.2.3 Results. We analyzed the collected experimental data in
terms of both per-batch labeling times and output model perfor-
mance. To analyze labeling times for batches 2 through 5 (recall
that no subjects saw predictions for batch 1), we use linear mixed
effects models of the log-transformed response time, with show con-
dition as a fixed effect and random intercept terms for both user and
batch. The random effects are included to account for per-subject
variance and the different contents of each labeling batch (e.g., with
potentially varied text lengths, ADR occurrence frequency, etc.). To
assess significance of final model performance metrics, we use the
non-parametric Wilcoxon rank-sum test.

Prior to analysis, we visualized raw responses to assess data qual-
ity. We found four subjects who produced results unlike the others,
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involving either very low final F1 scores (likely indicating confu-
sion, e.g. less than 0.35) or wildly varying batch completion times
(with batches completed too quickly for a full annotation effort, e.g.
less than 10 min). We dropped data for these four participants, and
analyzed data from 36 subjects, 18 in each condition.

Showing predictions accelerates annotation, supporting
H1. Showing model predictions within the annotation interface
significantly reduced average labeling time (y?(1) = 4.344, p = 0.037).
Our model predicts that the average time per batch is 1.01 to 1.44
minutes faster (95% CI, transformed from log domain) when predic-
tions are shown. The total experiment took a median 66.9 minutes
in the show predictions condition, versus a median 81.0 minutes in
the no predictions condition — a difference of 14 minutes. The results
support our hypothesis (H1) that showing predictions accelerates
annotation, thus reducing labeling effort.

Showing predictions does not effect performance, support-
ing H2. We found no significant effect of showing model predic-
tions on F1 (W = 185, p = 0.481), precision (W = 178.5, p = 0.613),
or recall (W = 189, p = 0.584) measured against a test set of 100
instances labeled by the first author. The results show no evidence
that showing predictions biases the labeling results (H2). That said,
we do observe slightly better median performance for the no pre-
dictions case (F1 = 0.71 vs. 0.69, precision = 0.62 vs 0.62, recall =
0.83 vs 0.80). However, these differences are not significant.

Subjects create “good enough” models. Across subjects, the
median performance was F1 = 0.70 (IQR [0.67, 0.71]), precision
= 0.62 (IQR [0.59, 0.67]), and recall = 0.82 (IQR [0.71, 0.86]). The
higher recall rate indicates a preference for false positives over false
negatives, arguably a desirable priority when analyzing potential
health risks. Though not directly comparable due to our modified
definition of ADR, the overall F1 of 0.70 echoes model performance
trained on 100 ground-truth labeled instances in Figure 2.

We can also examine the top-k ADR rankings induced by each
participants’ model. Figure 6 plots the top ADRs (in terms of aver-
age frequency across subject models) versus the rank indices of that
entity within each model. We can see that some models may “over-
look” an entity, but that overall there is a strong correlation among
the produced rankings. Notable discrepancies appear to be due to
differences in subjects’ strategies for labeling general words versus
more specific phrases; for example, “pain” versus “muscle pain®,
“cramp” versus “leg cramp”, and “ache” versus “muscle ache”. These
results also illustrate the contextual nature of iSeqL predictions:
had we used a dictionary classifier, there would be no variance in
the counts for entities across multiple dictionaries.

The sequence model’s ability to discover new terms also enriches
the collected entities. Looking at the top 100 entities for each model
across our user study, 189 unique entities (out of 334 total unique
entities) were “discovered” by at least one iSeqL model. These are
terms that, for at least one user’s model, were never annotated
within a model’s training data and yet were still positively predicted.
Of those, 94 entities — roughly half — were never annotated by any
of the subjects. For example, the span “brain fog” was never labeled
by anyone, yet was discovered by 30/36 user models (83%). Figure 7
shows the predicted counts of entities that were never annotated,
yet discovered by at least half of the participants’ models.

Exit survey results. Exit survey results are presented in Fig-
ure 8. For each Likert scale question, a rating of 1 implies low
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Figure 8: Exit survey results, visualized on a diverging scale.
Generally participants tend to trust their model predictions.

confidence in the user’s model, and a rating of 5 implies high con-
fidence. We found no significant difference between prediction
conditions in terms of entity confidence (u = 4.56, o = 0.50; W = 180,
p = 0.520), prediction confidence (u = 4.17, 0 = 0.56; W = 196.5, p =
0.195), or stopping criteria (u = 4.14, 0 = 0.87; W = 170.5, p = 0.781).
The averages show that the users have a high confidence in the top
few entities being correct and agree that the model is performing
reasonably. While the average score for the stopping criteria is
near the other Likert scale averages, the standard deviation is more
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than 50% higher. These results suggest that, though iSeqL provides
insight into whether another labeling batch is needed, subjects
exhibit uncertainty for when “enough is enough.”

6 DISCUSSION AND FUTURE WORK

We presented iSeqL, an interactive machine learning system for
sequence labeling to aid exploratory analysis of unstructured text.
Users are able to simultaneously evaluate and explore their data to
gain initial insights about unstructured text. We presented two case
studies that demonstrate how iSeqL can be used to view trends at
the entity level and enable exploratory visualization in combination
with other metadata fields of a dataset. In addition, we conducted
a user study on Mechanical Turk to assess overall performance
and evaluate the automatic inclusion of machine predictions within
iSeqL’s labeling interface. We found that online participants are able
to build sequence labeling models for identifying drug reactions
in about an hour. We demonstrate productivity gains, with no
evidence found for loss of performance, when including predictions
and confirm iSeqL’s ability to help users “discover” new entities.
In short, iSeqL can help users build models for complex scenarios
quickly without expert knowledge of how the models work.

There are a few limitations of iSeqL that lend themselves to
future work. One limitation is that iSeqL processes large training
and evaluation jobs on the entire dataset and sends predictions
over the network to clients to visualize, potentially causing latency
issues. Future system optimizations are needed for iSeqL to support
very large datasets with over a million sentences.

In our case studies, our models identified multiple entities that re-
fer to similar symptoms: e.g., “leg pain”, “leg hurts”, and “discomfort
in leg”. We attempted some simple transforms to help group entities
together, using the lemma of each word and removing stop words
to form extracted entities. While helpful, this transform does not ad-
equately solve the entity resolution problem, which is a compelling
interactive machine learning challenge in its own right. Future iter-
ations of iSeqL could explore methods for interactive grouping that
leverage the contextual embedding space, hierarchical structure,
and/or a knowledge base to provide additional insight.

Finally, further empirical work is needed to better understand the
labeling and exploration processes. We conducted our user study
online through Amazon Mechanical Turk. While this choice gives
us access to a diverse participant pool (at least, relative to college
campuses), we were unable to observe participants as they worked
with the tool. A think-aloud study could provide additional insights
into subjects’ experiences and the current limitations of the system.

To support these and other future research questions, iSeqL is
available as open source software at www.github.com/AkshatSh/
iSeqL. We hope that iSeqL will provide a valuable building block
for continuing work on interactive machine learning for visual
analytics.

ACKNOWLEDGMENTS

The project was supported by the Moore Foundation Data-Driven
Discovery Investigator program. We gratefully thank Tongshuang
Wu, Matthew Conlen, Dominik Moritz, Jane Hoffswell, Younghoon
Kim, Halden Lin, and Yang Liu for their helpful comments.



iSeqL: Interactive Sequence Learning 1UI 20, March 17-20, 2020, Cagliari, Italy

REFERENCES [24

[1] [n.d.]. Yelp Dataset. https://www.yelp.com/dataset/challenge. Accessed: 2018.

[2] Jirgen Bernard, Matthias Zeppelzauer, Markus Lehmann, Martin Miiller, and
Michael Sedlmair. 2018. Towards User-Centered Active Learning Algorithms.
Comput. Graph. Forum 37 (2018), 121-132.

[3] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Language Processing

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Association for Computational Linguistics (ACL) System
Demonstrations. 55-60. http://www.aclweb.org/anthology/P/P14/P14-5010

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
2013. Distributed Representations of Words and Phrases and their Composition-

[25

with Python (1st ed.). O’Reilly Media, Inc. ality. In NIPS. . . . .

[4] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet [26] Deok Gun Park, Seungyeon Kim, Jurim Lee, Jaegul Choo, Nicholas Diakopoulos,
Allocation. J. Mach. Learn. Res. 3 (March 2003), 993-1022. http://dLacm.org/ and Niklas Elmqvist. 2018. ConceptVector: Text Visual Analytics via Interactive
citation4cfm?i'd:944£"l9.944'937 ’ ? Lexicon Building Using Word Embedding. IEEE Transactions on Visualization

and Computer Graphics 24 (2018), 361-370.
[27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

[5] Yukun Chen, Thomas A. Lask, Qiaozhu Mei, Qingxia Chen, Sungrim Moon, Jingqi
Wang, Ky Nguyen, Tolulola Dawodu, Trevor Cohen, Joshua C. Denny, and Hua
Xu. 2017. An active learning-enabled annotation system for clinical named entity

recognition. BVIC Medical Informatics and Decision Making 17, 2 (05 Jul 2017), 82. 2017. Automatlc dlffefentlatlon in PyTorch. If‘ NIPS-W. )
https://doi.org/10.1186/s12911-017-0466-9 [28] Jeffrey Pennington, Richard Socher, a_nd Christopher D. Manning. 2014. GloVe:
[6] Yunxia Chen and S. Mani. 2011. Active Learning for Unbalanced Data in the Global Vector_s for Word Representation. In Empirical Methods in Natural Lan-
Challenge with Multiple Models and Biasing. In Active Learning and Experimental guage Processing (EMNLP). 1532-1543. http://www.aclweb.org/anthology/D14-
Design @ AISTATS. 1162 ‘ ‘
[7] Jason Chuang, Sonal Gupta, Christopher Manning, and Jeffrey Heer. 2013. Topic [29] Matthew Peters, Sebastian Ruder, and Noah A. Smith. 2019. To Tune or Not to

Tune? Adapting Pretrained Representations to Diverse Tasks.
Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power.
2017. Semi-supervised sequence tagging with bidirectional language models.

model diagnostics: Assessing domain relevance via topical alignment. In Interna-
tional Conference on Machine Learning. 612-620.

[8] Jason Chuang, Daniel Ramage, Christopher Manning, and Jeffrey Heer. 2012. - ;
Interpretation and trust: Designing model-driven visualizations for text analysis. CoRR abs/1705.00108 (2017). arXiv:1705.00108 http://arxiv.org/abs/1705.00108

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. [31] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
ACM, 443-452. Clark, Kenton Lee, and Luke S. Zettlemoyer. 2018. Deep contextualized word

representations. In NAACL-HLT.

Alec Radford. 2018. Improving Language Understanding by Generative Pre-
Training.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).
Alexander J. Ratner, Stephen H. Bach, Henry R. Ehrenberg, Jason Alan Fries, Sen
Wu, and Christopher Ré. 2017. Snorkel: Rapid Training Data Creation with Weak
Supervision. Proceedings of the VLDB Endowment. International Conference on
Very Large Data Bases 11 3 (2017), 269-282.

Sebastian Ruder, Matthew E Peters, Swabha Swayamdipta, and Thomas Wolf.

[30

=

Jason Chuang, Margaret E Roberts, Brandon M Stewart, Rebecca Weiss, Dustin
Tingley, Justin Grimmer, and Jeffrey Heer. 2015. TopicCheck: Interactive align-
ment for assessing topic model stability. In Proceedings of the 2015 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 175-184.

Weiwei Cui, Mengchen Liu, Lizhe Tan, Conglei Shi, Yangqiu Song, Zekai Gao,
Huamin Qu, and Xin Tong. 2011. TextFlow: Towards Better Understanding
of Evolving Topics in Text. IEEE Transactions on Visualization and Computer
Graphics 17 (2011), 2412-2421.

@
&,

[33

[34

[10

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: (35 AL e ;
Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019. Transfer Learning in Natural Language Processing. In Proceedings of the 2019
CoRR abs/1810.04805 (2018). Conference of the North American Chapter of the Association for Computational
[12] Ethan Fast, Binbin Chen, and Michael S. Bernstein. 2016. Empath: Understanding Lingi{isfics: T“f"”'“?s' 15-18. . L
Topic Signals in Large-Scale Text. In Proceedings of the 2016 CHI Conference (36] Dominik _Sacha,. Michael Sedlmair, Leishi Zhang, John Ald_o Lee, Jaakko Pelto-
on Human Factors in Computing Systems (CHI *16). ACM, New York, NY, USA, nen, Daniel Weiskopf, Stephen C. North, and Daniel A. Keim. 2017. What you
4647-4657. https://doi.org/10.1145/2858036.2858535 see is what you can change: Human-centered machine learning by interactive
[13] Cristian Felix, Anshul Vikram Pandey, and Enrico Bertini. 2017. TextTile: An Vlgual{zatlon: Neurocomputing 263 (2017), 164-175. )
Interactive Visualization Tool for Seamless Exploratory Analysis of Structured [37] Erik Tjong Kim Sang and Fien De Meulder. 2003. Iptroductlox} to the CoNLL-2003
Data and Unstructured Text. IEEE Transactions on Visualization and Computer Shared Task: Language—lnd'e}')enden't Named Entity Recognition. In CoNLL.
Graphics 23 (2017), 161-170. [38] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
[14] James Fogarty, Desney S. Tan, Ashish Kapoor, and Simon A. J. Winder. 2008. 2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Trans. Visualization &

Comp. Graphics (Proc. InfoVis) (2017). http://idl.cs.washington.edu/papers/vega-

CueFlik: interactive concept learning in image search. In CHL it
ite

[15] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, . . . .
Nelson F. Liu, Matthew Peters, Michael Schmitz, and Luke S. Zettlemoyer. Burr Settles and Mark Craven. 2008. An Analysis of Active Learning Strategies for

2017. AllenNLP: A Deep Semantic Natural Language Processing Platform. Sequence Labeling Tasks. In Proceedings of the Conference on Empirical Methods
arXiv:arXiv:1803.07640 in Natural Language Processing (EMNLP "08). Association for Computational

Linguistics, Stroudsburg, PA, USA, 1070-1079. http://dl.acm.org/citation.cfm?
1d=1613715.1613855
[40] Yanyao Shen, Hyokun Yun, Zachary Chase Lipton, Yakov Kronrod, and Anima

Sarvnaz Karimi, Alejandro Metke-Jimenez, Madonna Kemp, and Chen Wang. Anandkumar. 2017. Deep Active Learning for Named Entity Recognition. In
2015. Cadec: A corpus of adverse drug event annotations. Journal of biomedical Rep4NLP@ACL . o . . .
informatics 55 (2015), 73-81. [41] Carson Sievert. 2014. LDAvis: A method for visualizing and interpreting topics.
[18] Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and Simone Stumpf. 2015. [42] Noah A. Smith. 2019. Contextual Word Representations: A Contextual Introduc-

Principles of Explanatory Debugging to Personalize Interactive Machine Learning. tion. 'CORR abs/ 1902‘06906 (2019). . .

In Proceedings of the 20th International Conference on Intelligent User Interfaces (IUT [43] Gabriel Stanovsky, Dan}el (?Y“hlr rfmd Pab}o Me‘nde& 2017. Recognizing Mentions

°15). ACM, New York, NY, USA, 126-137. https:/doi.org/10.1145/2678025.2701399 of Adverse Drug Reflctlon in Social Media Using Knowledge-Infused Recurrent
[19] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, MOde}S' 'In Proceedings Uf the 1'5”’ C‘?”f erence of the European Chap ter of the
and Chris Dyer. 2016. Neural Architectures for Named Entity Recognition. In Association for Computational Linguistics: Volume 1, Long Papers. Association for

[39

[16] Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language under-
standing with Bloom embeddings, convolutional neural networks and incremen-
tal parsing. To appear (2017).

[17

HLT-NAACL. Computational Linguistics, 142-151. http://aclweb.org/anthology/E17-1014

[20] Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh Hajishirzi. 2018. Multi-Task [44] John T. Stasko, Carsten Gorg, Zhif:heng Liu, and Kanupriya Singha!, 2007. Jigsaw:
Identification of Entities, Relations, and Coreference for Scientific Knowledge Supporting Investigative Analysis through Interactive Visualization. 2007 [EEE
Graph Construction. In EMNLP. Symposium on Visual Analytics Science and Technology (2007), 131-138.

[21] Yi Luan, Mari Ostendorf, and Hannaneh Hajishirzi. 2017. Scientific Information [45] Gaurav Trivedi, Ph\_xong Pham, Wendy'W Ch'apman,'Rebecca Hwa, Janyce Wiebe,
Extraction with Semi-supervised Neural Tagging. CoRR abs/1708.06075 (2017). and Harry Hochheiser. 2018. NLPReViz: an interactive tool for natural language
arXiv:1708.06075 http://arxiv.org/abs/1708.06075 processing on clinical text. Journal of the American Medical Informatics Association

[22] Diana MacLean, Sonal Gupta, Anna Lembke, Christopher D. Manning, and Jeffrey : ZAMIA 251 (2918)’ ?1_87' .

Heer. 2015. Forum77: An Analysis of an Online Health Forum Dedicated to [46] D‘“‘*YF Wanvarie, Hiroya Tz?kamura, and Manabu OkumuAra. 2011. Active leafn-
Addiction Recovery. In ACM Computer-Supported Cooperative Work (CSCW). ing with AsubsequenceA sampling strategy for sequence labeling tasks. Information
http://idl.cs.washington.edu/papers/forum?77 and.Medza Technologies 6, 3 (2.01'1)’ 680f700~ . .

[23] Diana L. MacLean and Jeffrey Heer. 2013. Identifying medical terms in patient- [47] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill

Howe, and Jeffrey Heer. 2016. Voyager: Exploratory analysis via faceted browsing
of visualization recommendations. IEEE transactions on visualization and computer
graphics 22, 1 (2016), 649-658.

authored text: a crowdsourcing-based approach. In JAMIA.



1UI 20, March 17-20, 2020, Cagliari, Italy

[48]

[49

[50

[51]

[52]

Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk,
Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. 2017. Voyager 2:
Augmenting visual analysis with partial view specifications. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems. ACM, 2648-2659.

Yonghui Wu, Min Jiang, Jun Xu, Degui Zhi, and Hua Xu. 2017. Clinical Named
Entity Recognition Using Deep Learning Models. AMIA ... Annual Symposium
proceedings. AMIA Symposium 2017 (2017), 1812-1819.

Yingcai Wu, Furu Wei, Mengchen Liu, Norman Au, Weiwei Cui, Hong Zhou, and
Huamin Qu. 2010. OpinionSeer: Interactive Visualization of Hotel Customer
Feedback. IEEE Transactions on Visualization and Computer Graphics 16 (2010),
1109-1118.

Guineng Zheng, Subhabrata Mukherjee, Xin Luna Dong, and Feifei Li. 2018.
OpenTag: Open Attribute Value Extraction from Product Profiles. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &#38;
Data Mining (KDD ’18). ACM, New York, NY, USA, 1049-1058. https://doi.org/
10.1145/3219819.3219839

Henghui Zhu, Ioannis Ch. Paschalidis, and Amir M Tahmasebi. 2018. Clinical
Concept Extraction with Contextual Word Embedding. CoRR abs/1810.10566
(2018).

Shrivastava and Heer



