iSeqL: Interactive Sequence Learning

APPENDIX FOR ISEQL IUI 2020 SUBMISSION
A TIME STEPPING VIEWS

As users iterate through exploration and model building, they’re
visualizations will change less as the model stabilizes and reaches it
optimal performance. For users to understand this change, we allow
users to step to previous iteration of models and their respective
predictions, to see how their visualizations and stats have changed.
Consider figure 9. Here we can see how our visualization changes
over iterations. In early iterations we can see drastic changes as
our model learns our task, however in later iterations we see our
visualizations changes stabilizing, signifying that the model may
be done learning.

B MODEL HYPERPARAMETERS

In §3 we presented the various models we experimented with. Since
tuning model parameters can get tricky and hard, especially for
people without machine learning expertise, we did not want our
user to be involved with tuning the model. Instead, through exper-
imentation, we find a stable hyperparameter configuration, that
worked across all the domains we experimented with in §3.

Our dictionary models, simply memorize the training data so
there are no hyper parameters involved. However, for our neu-
ral models we list the hyper parameters for the models and their
training algorithms.

Word-Level BiLSTM CRF: The embedding layer has an em-
bedding dimension of 300, the BiLSTM has 1000 hidden dimensions
(500 in each direction). The learning rate for the SGD optimizer
is 0.01, and the weight decay was le-4. The batch size used for
training is 1. The supervised model was trained for 15 epochs on
each corpus, and the best performing model was selected. During
the active learning experiments, at each dataset size the model was
trained for 5 epochs, and the best performing one was reported.

ELMo BiLSTM CRF: We use 1024 dimension ELMo embed-
dings, the BiLSTM has 1000 hidden dimensions (500 in each di-
rection). The learning rate for the SGD optimizer is 0.01, and the

Iteration 6 Iteration 8

Figure 9: In this figure, we can see a view of service score vs.
yelp stars for our Yelp Case Study (§5.1.2). This shows hour
our changes through iterations. We can see large changes in
the first couple iterations, and minimal changes in the last
few signifying that the visualizations have stabilized and
model is nearing optimal performance.

1UI 20, March 17-20, 2020, Cagliari, Italy

weight decay was le-4. The batch size used for training is 1. The
supervised model was trained for 15 epochs on each corpus, and
the best performing model was selected. During the active learn-
ing experiments, at each dataset size the model was trained for 5
epochs, and the best performing one was reported.

C MODEL PERFORMANCE

In §3.1, we presented the concern of the scalability of our neural
models and our caching models, which cache the intermediate
ELMo vectors to save them from being computed during run time.
In this section we present an experiment showing the performance
increase of using our caching infrastructure on both CPU and GPU,
in both prediction (forward pass of network) and training (forward
and backward pass of network). Our results are presented in table
2, we show that with both CPU and GPU our models are much
faster when relying on the caching infrastructure. All experiments
are done on the CADEC dataset. Our models are implemented in
pytorch [27] and rely on ELMo from AlI2’s AllenNLP [15].

Without Cache With Cache

CPUit/s | GPUit/s | CPUit/s | GPU it/s
Prediction | 0.83 5.11 15.42 22.49
Training 0.57 3.70 1.47 12.54

Table 2: We present results for prediction and training with
and without our cacheing models implemented, to show our
speedup. We can see a drastic increase in iterations per sec-
ond for prediction and training when the cache is used.

